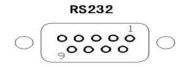
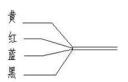

217(218)数据线使用说明

主要用途

- 1. 将量表协议转换成 Modbus RTU 协议。
- 2. 可替代测微计与集线盒(显示盒)进行通讯,或连接其它设备。





端口输出说明

217 线(插头型)

218 线(引线型)

<u>类型</u>	数据线						
型号	1010-217						
量表端接口	MINI 插头	MICRO 插头	MINI 插头	MICRO 插头			
接口形式	RS232 接口	RS232 接口	RS232 接口	RS232 接口			
通讯协议		Modbı	ıs RTU				
从站地址可调范围		1-:	247				
波特率可调范围		9600-	38400				
工作电压范围		DC	25V				
工作电流		< 50	0mA				
接设备端定义	九针	·串口	四芯	引线			
	引脚编号	功能	引线颜色	功能			
	2	黄	5V (电源)				
	3 RXD(数据 IN) 红 GND(地						
	4 5V (电源) 蓝 RXD(数扫						
	5 GND(地) 黑 TXD(数据						

通讯协议

一、协议与配置

- 1. Modbus RTU 模式
- 2. 出厂默认通讯参数:波特率 38400,1 个起始位,8 个数据位,无校验,1 个停止位
- 3. 出厂默认从站地址: 1

二. 读量表数据

主机查询命令		数据线响应			
01 03 00 00 00 02	0 00 00 02 C4 0B 01 03 04 01 00 12 35 37 78				
地址码	01H	地址码	01H		
功能码	03H	功能码	03H		
访问寄存器首	00H	数据字节长度	04H		
地址	00H	数据字1高8位	01H	量表数	标志位
				据	
数据字长度	00H	数据字1低8位	00H		
	02H	数据字2高8位	12H		测量数据
CRC (低 8 位)	C4H	数据字2低8位	35H		(16 进制)
CRC(高8位)	ОВН	CRC (低 8 位)	37H		
		CRC(高 8 位)		78H	

说明:

- 1) 上面主机与217数据线通讯的举例,主机发出8个字节取数命令,217数据线回应9个字节数据,高位在前,蓝色部分为量表测量数据。
- 2) 测量数据为 4 个字节,第一个字节为符号位,代表正负号,第 3 和第 4 字节为十六进制测量数据,分辩率为 1um。
- 3) 案例中的测量数据转成十进制分别为: 4661,由于符号位为 01H,表示为负数,且分辨率为 1um,所以实际位移长度为-4.661mm
- 4) 本机 CRC 效验码采用为 16 位 CRC 效验码,多项式为 X^16+X^15+X^2+1,查表算法举例见 附录。CRC 校验码只是保证数据可靠性,用户可以忽略,不影响检测结果。

三. 清零量表

主机清零命令		217 数据线响应		
01 06 08 00 AB 56 74 A4		01 06 08 00 AB 56 74 A4		
地址码	01H	地址码	01H	
功能码	06H	功能码	06H	
访问寄存器首	08H	寄存器首地址	08Н	
地址	00Н	00Н		
清零命令符	АВН	清零命令符	АВН	
	56H		56H	
CRC (低 8 位)	74H	CRC (低 8 位)	74H	
CRC(高8位)	A4H	CRC(高 8 位)	A4H	

- 1) 此命令可把量表清零,但量表在 ABS 模式。
- 2) 本机 CRC 效验码采用为 16 位 CRC 效验码,多项式为 X^16+X^15+X^2+1,查表算法举 例见附录

注意:

- 1. 最大值最小值极差值命令读取到的数据,是以上位机发送清零命令清零成功后的 0 位作为起始点开始记录,量表上的按键清零不作为起始点。
- 2. 读取到的最大值最小值极差值是数据线实时记录下来的,与量表上显示的数值不一致为正常现象。

四. 读取最大值

	X-1/-1/2 (E					
主机查询命令		测微计响应				
01 03 01 00 00 02	C5 F7	01 03 04 01 00 12 35 37 78				
地址码	01H	地址码	01H			
功能码	03H	功能码	03H			
访问寄存器首	01H	数据字节长度	04H			
地址	00H	数据字1高8位	01H	测微计	标志位	
				数据		
数据字长度	00Н	数据字1低8位	00Н			
	02H	数据字2高8位	12H		测量数据	
CRC(低8位)	C5H	数据字2低8位	35H		(16 进制)	
CRC(高 8 位)	F7H	CRC (低 8 位)	37H			
		CRC (高 8 位)		78H		

五. 读取最小值

主机查询命令		测微计响应举例			
01 03 02 00 00 02	00 02 C5 B3 01 03 04 01 00 12 35 37 78				
地址码	01H	地址码	01H		
功能码	03H	功能码	03H		
访问寄存器首	02H	数据字节长度	04H		
地址	00H	数据字1高8位	01H	测微计	标志位
				数据	
数据字长度	00H	数据字1低8位	00H		
	02H	数据字2高8位	12H		测量数据
CRC (低 8 位)	C5H	数据字2低8位	35H		(16 进制)
CRC (高 8 位)	взн	CRC (低 8 位)	37H		
		CRC (高 8 位)		78H	

六. 读取最大最小值差

主机查询命令		测微计响应			
01 03 03 00 00 02	C4 4F	01 03 04 00 00 12 35 36 84			
地址码	01H	地址码	01H		
功能码	03H	功能码	03Н		
访问寄存器首	03H	数据字节长度	04H		
地址	00H	数据字1高8位	00H	测微计	标志位

数据字长度	00H	数据字1低8位	00H	数据	
	02H	数据字2高8位	12H		测量数据
CRC(低8位)	C4H	数据字2低8位	35H		(16 进制)
CRC(高 8 位)	4FH	CRC (低 8 位)		36H	
		CRC (高 8 位)		84H	

七. 清最大最小值差记录

174人人人,但在164人					
主机清零命令		测微计响应			
01 06 02 00 00 00 88 72		01 06 02 00 00 00 88 72			
地址码	01H	地址码	01H		
功能码	06Н	功能码	06H		
访问寄存器首	02H	寄存器首地址	02H		
地址	00Н		00H		
清零命令符	00Н	清零命令符	00H		
	00Н		00H		
CRC (低 8 位)	88H	CRC (低 8 位)	88H		
CRC(高 8 位)	72H	CRC(高 8 位)	72H		

附录一:CRC 算法举例

```
unsigned short CRC(unsigned char frame[], int n)

//数组 frame 是 CRC 校验的对象, n 是要校验的字节数
{

    int i, j;
    unsigned short crc, flag;
    crc=0xffff;
    for(i=0;i<n;i++)
    {

        crc^=frame[i];
        for(j=0;j<8;j++)
        {

            flag=crc&0x0001;
            crc>>=1;
            if(flag)
            {

                crc&=0x7fff;
                crc^=0xa001;
            }
        }
        return(crc);
}
```

注: MODBUS CRC 校验码传输是低位在前,高位在后。