显示盒

DP-1B

用户手册 V1.3

1	材	既述	3
	1-1	功能特点	3
	1-2	产品选型	3
	1-3	配件选购	3
2	安装	专连接	4
	2-1	外形尺寸	4
	2-2	安装	4
	2-3	连接	4
3	端[口说明	5
	3-1	输入输出	5
	3-2	通讯接口	6
	3-3	传感器接口	6
4	使月	月说明	7
	4-1	面板说明	7
	4-2	操作说明	8
	4-3	参数设置	9
	4-3	-1 串口设置	. 9
	4-3	-2 通讯地址	10
	4-3	-3 公差结果输出模式	10
	4-3	-4 公差与预设值设置	11
	4-3	-5 数据格式与方向切换	12
	4-3	-6 报警模式	12
	4-3	-7 恢复出厂设置	12
5	通订	汛协议	13
6	故『	章排除	15

目录

1 概述

1-1 功能特点

- 1) 带显示,可自动判断故障与报警显示;
- 2) 可按键设置设备地址和串口通讯参数等;
- 3) 带 RS232 通讯接口,可连接电脑、PLC 等, 采用 MODBUS 通讯协议;
- 4) 4种查询模式实时值、最大值、最小值、极差值;(最大最小值不适用于数显量表)。
- 5) 4 路外部输入控制实现测量数据确认、锁定、清零和输出关闭功能;
- 6) 3 路外部输出公差测试结果,可驱动外部报警灯、继电器等;
- 7) 可设置公差和预设值数据,预设值即把清零位置直接显示为工件标准值;
- 8) 3 种公差结果输出模式可选(实时输出、锁定输出、自动测量输出);
- 9) 自动工件到位判断功能,开启此功能后,当测头接触到工件且稳定停留一段时间后才输出公差判断结果;
- 10) 声音报警功能,可选择超差时声音报警或合格时声音报警
- 11) 测微计数据更新速度为 100 次每秒;
- 12) 可通过上位机软件 (GEZTEST 软件)实现通讯参数设置,数据采集与导出表格文件;

1-2 产品选型

型号: DP-1B; 与一代显示盒对比, 二代显示盒新增以下功能:

- 1)新增最大值、最小值、极差值查询模式(不适用于数显量表);
- 2) 新增锁定输出模式;
- 3)新增支持上位机软件更改地址或串口通讯参数等;
- 4) 新增可接九针串口型测微计

1-3 配件选购

测微计

规格类型:

● 12V 电源与电源转换线

引线型 CW-141A(341A)

2 安装连接

2-1 外形尺寸

2-2 安装

如下图,把显示盒安插入设备的孔上,开孔尺寸为 92X45

2-3 连接

连接带标准串口电脑,请用 RS232 串口线。连接无标准串口电脑,请用 USB 转 RS232 线,通过电脑 USB 口与显示盒相连,电脑中需安装该数据线的驱动程序。

显示盒连接 PLC 在调试时,建议用电脑先通过数据线连接显示盒,使用本公司免费软件 (GEZTEST 软件) 先连通硬件,或用第三方串口调试助手软件,直接发命令检查是否有回复数据, 再把数据线接到 PLC 或其 它设备,检查串口助手收到的命令是否正确, 最后 PLC 或其它设备再直接连显示盒。

3 端口说明

3-1 输入输出

功能	端口编号	名称	说明	备注
电源输入	+	正极	范围 9~24V,输入功率<1W;	
	-(🚽)	负极 GND		
	1	负极 GND		
外部	2	输出关闭	关闭公差结果输出(针对端口 6~8)	输入端口与 GND
输入	3	外部清零	清零测微计数据	短路超过 20 毫
	4	外部锁定	锁定显示当前测微计数据	秒后触发相应功
	5	外部确认	主动上传测微计数据(软件自动识别); 见 5 通讯协议	能
外部	6	超上差输出	测微计数据大于上公差时输出	输出 0V , (超
输出	7	合格输出	测微计数据在公差范围内时输出	过 200mA 可能触
	8	超下差输出	测微计数据小于下公差时输出	发过流保护)

显示盒输入输出 I/O 口电路图如下:

显示盒输入输出端与 PLC 连接示意图:

3-2 通讯接口

端口编号	名称	备注
9	输入电源负极 GND	地
10	RS232-发送(TXD)	可以接电脑串口-Pin2(接受数据 RXD)
11	RS232-接收(RXD)	可以接电脑串口-Pin3(发出数据 TXD)

3-3 传感器接口

传感器接口 S1 有两种接口, 接插头型测微计或散线型测微计, 二选一不能同时接

端口编号	名称	备注
15	5V	接引线型测微计(黄线: 5V 电源)
14	输入电源负极 GND	接引线型测微计(红线: GND 地)
13	RS232-发送(T)	接引线型测微计(蓝线: RXD 数据 IN)
12	RS232-接收(R)	接引线型测微计(黑线: TXD 数据 OUT)

4 使用说明

4-1 面板说明

	12 N	13 RV	MIN	HI O	GO	0	ZERO
			 				$\stackrel{ riangle}{ extsf{O}}$
M4 N) (15 N	лб С М	O ESC	O SET) (\bigcirc	\bigcirc

按键说明:

【MOD】	设置公差切换
[•]	移动按键//切换设置/切换查询模式(显示状态)
【▲】	增加按键/修改按键
[•]	减小按键/修改按键
【ZERO】	清零按键
(SET)	确认按键/设置按键
ESC	退后按键/退出按键/退出锁定/查看故障

LED 指示灯说明:

(RV)	实时值状态指示
(MAX]	最大值状态指示
(MIN)	最小值状态指示
(ні)	超上差,不合格;在公差设置中闪动表示设置上公差
(GO)	产品合格,在公差带内;在公差设置中闪动表示设置预设值
LO]	超下差,不合格;在公差设置中闪动表示设置下公差
(M1)	声音报警开启指示
(M2)	自动模式指示
(M3)	设置状态指示
【 M4 】	输出状态指示 【M4】亮:外部输出开启, 【M4】灭:外部输出关闭
(M5)	锁定状态指示 【M5】闪动: 数据已锁定
(M6)	外部确认指示 【M6】闪动

4-2 操作说明

1) 上电:

显示盒接通电源后开始初始化,显示"-----",整个过程约3秒,在此期间智能检查硬件是否工作正常, 如发现存在故障则会显示2秒钟的故障信息;然后直接显示测微计数据;

2) 数据显示:

显示屏显示数字为测头位移数据,单位为毫米,最小分辨率为1微米。

共四种查询模式, 长按【▶】键 2 秒可切换模式, 无操作 3 秒后自动保存状态(断电保存), 出厂默认为【RV】模式;

【RV】点亮	显示实时位移值
【MAX】点亮	显示最大位移值
【MIN】点亮	显示最小位移值
【MAX】【MIN】同时点亮	显示位移极差值

注:最大最小值查询功能不适用于数显量表

3) 数据清零:

短按【ZERO】键可以使显示数据清 0,当预设值不为 0,且查询模式非【MAX】【MIN】极差值时,则清零后显示预设值;关于预设值设置见 4-3-4。

		【MAX】最大值【MIN】最小值			
	【RV】实时值	【MAX】【MIN】极差值			
短按	将测微计数据清零;	仅清除测微计最大最小值记忆;			
【ZERO】键					
长按	将测微计数据清零;	仅清除测微计最大最小值记忆;			
【ZERO】键					
外部清零	短路端口 3 和电源负极 GND 将测微计数据清零;				

4) 故障显示

显示能够自动检测故障,故障发生时显示盒直接显示故障代码,同时【M1】点亮,或长按【ESC】键可 以查看故障代码;故障代码显示 "EXXX00", "E" 表示故障,当 X=1 时,表示此项故障,当 X=0 时,表示此 项正常;

从左往右数,第1个X表示输出过流故障,第2个X表示上位机通讯故障,第3个X表示测微计通讯 故障,最后2个数字预留,所以一直显示0。

例如:

E10000: 过流报警;

E01000: 上位机通讯故障;

E00100: 测微计通讯故障;

如果想退出故障显示界面,可以短按【ESC】键退出,【M1】灭,不再主动显示故障信息;或者等待所 有故障都恢复正常后延时 3 秒自动退出故障显示界面,同时下次再出现故障能主动显示故障信息。

4-3 参数设置

长按【SET】键,【M3】点亮,进入参数设置界面; 首先显示序号,短按【▲】键或【▼】键可以增加或减小序号;

设置状态

序号	功能描述	备注	出厂默认	备注
PA -01	串口设置	设置串口波特率, 校验位, 停止位	38400, n,8,1	见 4-3-1
PA -02	通讯地址	设置 Modbus 协议中的设备地址	1	见 4-3-2
PA -03	公差输出模式	设置外部端口 6~8 的输出方式	持续输出	见 4-3-3
			下公差-1.000	见 4-3-4
PA -04	公差设置	设置数据合格判定的公差范围	上公差 1.000	
			预设值 0.000	
PA -05	数据格式与方向切换	设置传感器位移数据的格式与方向	01 格式;正向	见 4-3-5
PA -06	报警模式	设置声音报警开关与方式	关闭报警	见 4-3-6
PA -07	恢复出厂设置	设置恢复上述设置的出厂默认值		见 4-3-7

在参数设置界面下短按【SET】键确定则进入相应序号对应的功能设置进行修改,详情见备注;

4-3-1 串口设置

前 5 位显示表示波特率,最后一位表示停止位,短按【▶】键切换修改参数,波特率可设置 4800、9600、19200、38400、115200,短按【▲】键或【▼】键可以修改闪动的参数;最后短按【ENT】键确定保存,短按【ESC】键则不保存退出;

停止位可设置: "1"表示1个停止位无校验; "2"表示2个停止位无校验; "E"表示1个停止位偶校 验; "O"表示1个停止位奇校验; 无校验条件下, 已兼容1个停止位或2个停止位

4-3-2 通讯地址

地址设置范围 1[~]254, 短按【▲】键或【▼】键可以增加或减小;长按可以快速加减;最后短按【ENT】 键确定保存, 短按【ESC】键则不保存退出;

4-3-3 公差结果输出模式

显示第1位表示输出模式,"0"表示持续输出模式,"1"表示外部锁定控制模式,"2"表示自动检测 模式

短按【▲】键或【▼】键可以修改;最后短按【SET】键确定保存, 短按【ESC】键则不保存退出; 1) 持续输出模式

一直保持输出状态,不会关闭,【M4】灯长亮,【HI】【GO】【LO】点亮与相应外部输出保持一致 【HI】点亮:数据>上公差设置数据,对应端口 8 输出拉低至 GND;

【GO】点亮:数据在公差设置范围内,对应端口7输出拉低至 GND;

【LO】点亮:数据<下公差设置数据,对应端口6输出拉低至GND。

2) 外部锁定控制模式

只在外部锁定信号有效时输出,锁定时端口 6[~]8 有输出,【M4】灯亮,解锁时端口 6[~]8 无输出,【M4】 灯灭,其中:

RV 状态: 锁定输入(端口 4)接地 GND 后为锁定,断开为解锁;

非 RV 状态:锁定输入(端口 4)接地 GND 后立即清除记忆然后持续采集数据,直到与地 GND 断开后锁定数据显示并输出公差结果,同时【M5】闪动,退出只能短按【ESC】键可以解锁,或者继续下一次测量。

3) 自动检测模式

测微计数据在规定时间内保持稳定后才会输出,【M4】灯亮,端口 6[~]8 有输出,反之无输出,【M4】 灯灭,此时可短按【▶】键切换设置内容,只能修改呈闪动状态的参数,其中:

第2位表示自动检测时间,修改范围1~9,单位:200ms;

第3位表示检测数据稳定变化量,修改范围1~9,单位: 0.005mm

第4位和第5位表示超时输出时间, 修改范围 01~99, 单位: 秒

第6位表示自动检测起点,L表示最小值为起点,H表示最大值为起点;清零能清除起点记忆值

起点定义为:1 号测微计数据,当离开起点 0.05mm 后开始计算测微计数据是否稳定,才会有输出,否则无输出。

例如:

"2.3.2.50.L"表示: 当测头数据超过最小值(起点)0.05mm 时开始计时自动判断输出,如果 0.6 秒内数据变 化不超过 0.01mm,则输出公差结果,反之,不输出;但如果超过 50 秒后强行输出公差结果;

4-3-4 公差与预设值设置

●进入设置状态

此时数字最高位和"LO"指示灯都闪动,数字闪动表示可以被修改,"LO"指示灯闪动表示现在设置的是下公差

● 切换设置数据类型

按下【MOD】键,"LO"灯、"HI"灯和"GO"灯依次循环闪动,"LO"表示设置下公差;"HI"灯 表示设置上公差;"GO"灯表示设置预设值,即设置清零后所显示的数值。

预设值是在零点基础上增加设定数值,每次清零后,都会显示该数值。预设值的用法是,用户把 预设值设置为标准工件的实际尺寸,当用户用标准工件来校准时,按下清零键,这时就会显示预设的 标准值,这样,测量其他工件的时就会显示被测工件的实际尺寸,而不是偏差值。 近常公差后,可自动比较上下公差的主体,下公差应该本下上公差,如用近常进得自动。

设置公差后,可自动比较上下公差的大小,下公差应该小于上公差,如果设置错误会出现错误提醒, 见下图

显示出错信息后,自动重新回到上公差设置状态。

● 修改设置数据

在上述三个设置状态,如果是最高位闪动,按下【▲】键或【▼】键,则在"0~9"和"一"之间切换,"一"表示可以设置负数。长按【ZERO】键可以清零设置值。

按下【▶】键:,闪烁位右移一位,可不断循环。按下【▲】键可以使闪动位置的数据加一,或按 下【▼】键可以使闪动位置的数据减一,

● 退出设置

设置结束后,按下【SET】键,"M3"指示灯灭,退出公差设置状态并保存所设置的数据。如果不想保存 当前设置的数据,则短按【ESC】键退出公差设置状态。

4-3-5 数据格式与方向切换

显示第3位和第4位表示数据格式,最后1位表示方向,短按【▶】键切换修改参数,短按【▲】键或 【▼】键可以修改闪动的参数;最后短按【SET】键确定保存,短按【ESC】键则不保存退出;

1) 数据格式

"01"格式表示测微计 4 个字节数据取第 1 个字节表示正负数,01 表示负数;00 表示正数;后 3 个字节组成为无符号整数,如 01 00 00 01 表示-0.001mm。

"FF"格式表示测微计 4 个字节数据组成为 1 个 32 位有符号整数;如 ff ff ff 表示-0.001mm。2)方向

"0" 表示正向; 推动测杆时数据增加

"1" 表示反向; 推动测杆时数据减小

4-3-6 报警模式

显示前 3 位表示报警开关,最后 2 位表示报警条件,短按【▶】键切换修改参数,短按【▲】键或【▼】 键可以修改闪动的参数;最后短按【SET】键确定保存,短按【ESC】键则不保存退出;

报警开关"oFF"表示:关声音报警; 报警开关"on"表示:开声音报警 报警条件"nG"表示:数据超差报警 报警条件"Go"表示:数据合格报警

4-3-7 恢复出厂设置

刚开始显示"no",表示取消,此时如果短按【SET】键或【ESC】键后会退出,只能先短按【▲】键或 【▼】键,显示"yES",表示确定,此时再短按【SET】键才会恢复出厂设置后并退出;

5 通讯协议

- 采用 MODBUS RTU 模式, CRC16/Modbus x16 +x15 +x2 +1
- CRC_L 表示校验码低 8 位, CRC_H 表示校验码高 8 位

● 默认站号地址:01, 下方举例以01为通讯地址;

1) 查询位移数据

说明	读取命令: 03										
	读取数据地址: 00(西门子 PLC: 400001)										
	读取数据	读取数据长度:02									
序号	1	1 2 3 4 5 6 7 8 9									
发送格式	地址	03	00	00	00	02	CRC_L	CRC_H			
回复格式	地址	03	04	Dat1	Dat2	Dat3	Dat4	CRC_L	CRC_H		
	其中, Dat1~Dat4 为传感器位移数据										
发送举例	01 03 00	00 00 02 c4	1 Ob								
回复举例1	01 03 04	01 00 00 0a	a 7b cb								
	0100 00 0a 表示 -0.01mm,数据格式为"01", 见 4-3-6										
回复举例 2	01 03 04	01 03 04 FF FF FF FF FB A7									
	FF FF FF F	F 表示-0.0	01mm,娄	女据格式为	"FF", 见	4-3-6					

2) 清零

说明	写入命令	: 06							
	写入地址	写入地址: 0800H(十六进制) 2048(十进制)							
	写入数据	写入数据: AB56H(十六进制)							
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	08	00	AB	56	CRC_L	CRC_H	
回复格式	地址	06	08	00	AB	56	CRC_L	CRC_H	
发送举例	01 06 08	01 06 08 00 AB 56 74 A4							
回复举例	01 06 08	00 AB 56 7	4 A4						

3) 外部确认:

触发条件	短路端口 5 和电源负极 GND 保持 20ms,			, 则显示	京盒确认当前数据主动上传测微计数据				
	见 3-1								
序号	1	2	3	4	5	6	7	8	9
发送格式	地址	83	04	Dat1	Dat2	Dat3	Dat4	CRC_L	CRC_H
	其中, Dat1~Dat4 为传感器位移数据								
发送举例	01 83 04 00 00 00 E5 F3								

4) 修改查询模式

说明	写入命令	≻: 0 6							
	写入地址	: 3036H(十六进制)	12342	(十进制)				
	写入数据 :查询模式								
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	30	36	00	查询	CRC_L	CRC_H	
						模式			
回复格式	地址	06	30	36	00	查询	CRC_L	CRC_H	
						模式			
	查询模式 =0,表示实时值模式								
	查询模式 =1,表示最大值模式								
	查询模式 =2,表示最小值模式								
	查询模式 =3,表示极差模式(最大最小值之差)								
	见 4-2								
发送举例	01 06 30 36 00 01 A7 04								
回复举例	01 06 30 36 00 01 A7 04								
	查询模式	设置为最	大值模式						

附录一:CRC 算法举例

```
unsigned short CRC(unsigned char frame[], int n)
//数组 frame 是 CRC 校验的对象, n 是要校验的字节数
{
    int i, j;
    unsigned short crc,flag;
    crc=0xffff;
    for(i=0;i<n;i++)</pre>
    {
        crc^=frame[i];
        for(j=0;j<8;j++)
        {
             flag=crc&0x0001;
             \operatorname{crc} \gg =1;
             if(flag)
             {
                 crc&=0x7fff;
                 crc^=0xa001;
            }
        }
    }
```

```
return(crc);
```

}

注: MODBUS CRC 校验码传输是低位在前,高位在后。

6 故障排除

故障	检查	解决办法		
	显示盒显示是否正常	检查电源		
	电脑设备管理器查看 COM, 看电脑是	不能识别, 更换 USB-232 数据线		
	否识别 USB-232 数据线?			
连不上电脑	COM 端口号是否大于 16?	换个 USB 口接, 或者更改端口号<16		
	GEZTEST 软件是否提示扫描当前 COM	软件不兼容 USB-232 数据线, 更换, 推荐		
	端口号	使用本公司生产的 USB-232 数据线		
	显示盒异常	更换显示盒		
推动测微计数据无	测微计是否损坏? 是否报警 E00100?	更换测微计		
变化	更换正常的测微计还是不行?	更换显示盒		
清零后数据不为0	检查预设值是否设置不为0	设置预设值为0		
功能异常		恢复出厂设置		
数据不准确		更换测微计		
无输出	M4 灯是否点亮?	检查公差设置模式		
	M1灯是否点亮?	部分故障发生时停止输出		
显示 E10000	外部输出电流过大	检查外部输出负载		
显示 E01000	上位机发送命令格式是否正确?	更换显示盒		

地址	名称	长度	属性
00	位移量	4 字节	R

格式一位移量说明(默认)

字节1	符号位	01 代表符号
字节 2		
字节 3	位移数据	16 进制
字节 4	位移数据	16 进制

格式二位移量说明

字节1	位移数据	32 位有符号整数
字节 2	位移数据	(16 进制),单位 um
字节 3	位移数据	
字节 4	位移数据	