二代集线器主盒

CL-MA

用户手册 V1.3

1	概述	2
	1-1 功能特点	2
	1-2 产品选型	2
	1-3 配件选购	3
2	安装与连接	4
	2-1 安装	4
	2-2 连接	4
3	端口说明	5
	3-1 输入输出	5
	3-2 通讯接口	6
4	使用说明	7
	4-1 面板说明	7
	4-2 操作说明	8
	4-3 参数设置	9
	4-3-1 串口设置	D
	4-3-2 通讯地址	D
	4-3-3 公差结果输出模式1	1
	4-3-4 公差与预设值设置1	2
	4-3-5 数据格式与方向切换1	3
	4-3-6 恢复出厂设置1	3
5	通讯协议1	3
6	故障排除1	7

目录

1 概述

1-1 功能特点

1) 带显示,可自动判断故障与报警显示;

2) 可按键设置设备地址和串口通讯参数等;

- 3)带 RS232和 RS485通讯接口,可连接电脑、PLC等,采用 MODBUS 通讯协议;
- 4) 4 种查询模式可选(实时值、最大值、最小值、极差值);
- 5) 4 路外部输入控制实现测量数据确认、锁定、清零和输出关闭功能;
- 6) 3 路外部输出公差测试结果,可驱动外部报警灯、继电器等;
- 7) 可单独设置公差和预设值数据,预设值即把清零位置直接显示为工件标准值;
- 8) 可接4个测微计;可通过接分盒,扩展测微计数量,最大支持60个测微计;
- 9)当扩展分盒数量不超过5时,测微计数据更新速度为50次每秒,之后每增加1个分盒,测微计数据更新速度会逐步下降;

10) 可通过上位机软件 (GEZTEST 软件)实现通讯参数设置,数据采集与导出表格文件;

1-2 产品选型

型号	名称	显示与按键	通讯接口	输入控制	输出控制	备注
CL-MA	主盒	有	有	有	有	
CL-NA	无显示 主盒	无	无	有2路	无	外部输入仅外部清零 和外部确认可用
CL-FA	分盒	无	无	无	无	不能单独使用

说明:

客户如果需要数据上传 PLC,或其它非电脑设备,建议加购 USB 转 232 数据线或 USB 转 485 数据线(见 1-3 配件选购),在调试时,建议用电脑先通过数据线连接集线盒,使用本公司免费软件 (GEZTEST 软件)先 连通硬件,或用第三方串口调试助手软件,直接发命令检查是否有回复数据,再把数据线接到 PLC 或其它 设备,检查串口助手收到的命令是否正确,最后 PLC 或其它设备再直接连集线盒。

针对原来使用旧款集线器的客户, CL-MA 有一键设置成旧款集线器的出厂默认参数, 操作如下:

CL-MA 一上电前同时按住【ESC】 键和【ENT】 键, 直至上电后显示" yES "后放开, 则 CL-MA 完成修改以下参数并保存:

通讯地址: 128, 串口设置: 38400, n,8,1, 数据格式: 01 格式, 参考 4-3 参数设置

1-3 配件选购

● 12V 电源与电源转换线

● USB 转 232 数据线 ----- 型号: <u>1010-220</u>

2 安装与连接

2-1 安装

安装方式有以下2种:

1, 轨道安装(DIN 导轨):

将集线器的调整片安装到轨道上。在箭头(1)的方向插入集线器时,用少许拉力朝箭头(2)的方向向 下推入轨道上;如果需要拆下集线器时,往箭头(1)方向,用少许力拉回,朝箭头(3)方向拔起集线器。

2, 螺丝安装:

箭头1处上 M2X4 自攻钉,将垫片与盒子连接;箭头2处用 M2X8 螺钉,安装到所需要的地方。

2-2 连接

(2)

连接带标准串口电脑,可直接用 RS232 串口线。连接无标准串口电脑,请用 USB 转 RS232 线,通过 电脑 USB 口与集线器相连,电脑中需安装该数据线的驱动程序。 或者用 USB 转 RS485 线按定义接线。 连接 PLC 与连接电脑的方式相同。

(1)

3 端口说明

3-1 输入输出

功能	端口编号	名称	说明	备注
电源输入	+	正极	范围 9~24V, 输入功率>1W;	
	- (=)	负极 GND		
	X1	输出关闭	关闭公差结果输出	
外部	X2	外部清零	清零所有测微计数据	输入端口与GND短路超过
输入	X3	外部锁定	锁定显示当前测微计数据	20 毫秒后触发相应功能
	X4	外部确认	主动上传测微计数据;见5 通讯协议	
外部	Y1	超差输出	测微计数据不在公差范围内时输出	有效时输出 0V, 平时断开
输出	Y2	合格输出	测微计数据在公差范围内时输出	无输出。 (超过 200mA
	Y3	预留		可能触发过流保护)

显示盒输入输出 I/O 口电路图如下:

输入输出端口进 PLC (注意: PLC 输入口需要是漏型或混合式),如下图:

3-2 通讯接口

主盒与分盒之间的连接方式参考 2-2

4 使用说明

4-1 面板说明

按键说明:

- 【◀】键: 查看当前测微计所在通道编号
- 【▶】键: 移动按键/切换设置/切换显示状态
- 【▲】键: 增加按键/修改按键

【▼】键:	减小按键/修改按键
【ZERO】键:	清零按键
【ENT】 键:	确认按键/设置按键
【ESC】 键:	退后按键/退出按键/退出锁定/查看故障

LED 指示灯说明

(RV)	实时值状态指示
(MAX)	最大值状态指示
(MIN)	最小值状态指示
(HI)	超差,不合格;在公差设置中闪动表示设置上公差
(GO)	产品合格,在公差带内;在公差设置中闪动表示设置预设值
[LO]	预留;在公差设置中闪动表示设置下公差
(M1)	故障指示
(M2)	自动模式指示
(M3)	设置状态指示
(M4)	输出状态指示 【M4】亮: 外部输出开启, 【M4】灭: 外部输出关闭
(M5)	锁定状态指示 【M5】闪动:数据已锁定显示
(M6)	外部确认指示 【M6】闪动

4-2 操作说明

1) 上电:

主盒接通电源后开始初始化,先显示"-----",整个过程约3秒;然后开始扫描测头数量并分配地址,如显示"-04-"表示共扫描到4个测微计;如果检测有故障先显示故障,2秒后显示当前工作模式,如显示 "CH01 ",表示准备显示1号通道的测微计数据,1秒后直接显示1号测微计数据;此时短按【▲】键或 【▼】键可以切换显示各个通道的测微计数据

2) 数据显示:

显示屏显示数字为测头位移数据,单位为毫米,最小分辨率为1微米。短按【◀】键, 查询当前测微 计所在通道编号,1秒后自动回到测微计数据显示

共四种查询模式, 长按【▶】键切换, 切换3秒后自动保存状态(断电保存), 出厂默认为【RV】模式;

【RV】点亮	显示当前通道的测微计实时位移值
【MAX】点亮	显示当前通道的测微计最大位移值
【MIN】点亮	显示当前通道的测微计最小位移值
【MAX】【MIN】同时点亮	显示当前通道的测微计位移极差值

3) 数据清零:

短按【ZERO】键可以使显示数据清 0,当预设值不为 0,且查询模式非【MAX】【MIN】极差值时,则 清零后显示预设值;关于预设值设置见 4-3-4。

	【MAX】最大值【MIN】最小值
【RV】实时值	【MAX】【MIN】极差值

短按	将当前显示通道的测微计数据清零;	仅清除当前通道的测微计最大最小值记忆;				
【ZERO】键						
长按	将所有通道的测微计数据清零; 清除所有通道的测微计最大最小值					
【ZERO】键						
外部清零	短路端口 X2 和电源负极 GND 将所有通道的测微计数据清零;					

4) 故障显示

主盒能够自动检测故障,故障发生时主盒直接显示故障代码,同时 M1 点亮,或长按【ESC】键可以查 看故障代码,故障代码显示"EXXXXX","E"表示故障,当 X=1 时,表示此项故障,当 X=0 时,表示此 项正常。

从左往右数,第1个X表示输出过流故障,第2个X表示上位机通讯故障,第3个X表示主盒内部测微计查询模块通讯故障,最后2个数字表示分盒通讯故障地址。

例如:

E10000: 过流报警

E01000: 上位机通讯故障

E00200:2 号测微计通讯故障

E00003:3 号分盒通讯故障

如果想退出故障显示界面,可以短按【ESC】键退出,不再主动显示故障信息;或者等待所有故障都恢复正常后延时3秒退出故障显示界面,同时下次再出现故障能主动显示故障信息。M1灭

4-3 参数设置

长按【ENT】键,【M3】点亮,进入参数设置界面;首先显示序号,短按或长按【▲】键或【▼】键可以增加或减小序号;

序号	功能描述	备注	出厂默认	备注
PA -01	串口设置	设置串口波特率, 校验位, 停止位	19200, n,8,1	见 4-3-1
PA -02	通讯地址	设置 Modbus 协议中的设备地址	16	见 4-3-2
PA -03	公差输出模式	设置端口 Y1、Y2、Y3 的输出方式	持续输出	见 4-3-3
			下公差-1.000	见 4-3-4
PA -04	公差设置	设置数据合格判定的公差范围	上公差 1.000	
			预设值 0.000	
PA -05	数据格式与方向切换	设置传感器位移数据的格式与方向	FF 格式;正向	见 4-3-5
PA -06	恢复出厂设置	设置恢复上述设置的出厂默认值		见 4-3-6

在参数设置界面下短按【ENT】键确定则进入相应序号对应的功能设置进行修改,详情见备注;

4-3-1: PA-01 串口设置

前5位显示表示波特率,最后一位表示停止位,短按【▶】键切换修改参数,波特率可设置4800、9600、19200、38400、115200,短按【▲】键或【▼】键可以修改闪动的参数;最后短按【ENT】键确定保存,短按【ESC】键则不保存退出;

停止位可设置: "1"表示1个停止位无校验; "2"表示2个停止位无校验; "E"表示1个停止位偶校验; "O"表示1个停止位奇校验; 无校验条件下,已兼容1个停止位或2个停止位

4-3-2: PA-02 通讯地址

地址设置范围 1[~]254, 短按【▲】键或【▼】键可以增加或减小;长按可以快速加减;最后短按【ENT】 键确定保存, 短按【ESC】键则不保存退出;

4-3-3 PA-03 公差结果输出模式

显示第1位表示输出模式,"0"表示持续输出模式,"1"表示外部锁定控制模式,"2"表示自动检测模式

短按【▲】键或【▼】键可以修改;最后短按【SET】键确定保存, 短按【ESC】键则不保存退出; 1) 持续输出模式

一直保持输出状态, 不会关闭, 【M4】灯长亮, HI GO 点亮与相应外部输出保持一致

【HI】点亮:有1个或多个测微计数据超差,对应端口 Y1 输出拉低至 GND

【GO】点亮:所有测微计数据都在公差设置范围内,对应端口 Y2 输出拉低至 GND

2) 外部锁定控制模式

只在外部锁定信号有效时输出, 锁定时端口 Y1、Y2 有输出, 【M4】灯亮, 解锁时端口 Y1、Y2 无输出, 【M4】灯灭, 其中:

RV 状态: 锁定输入(端口 X3)接地 GND 后为锁定,断开为解锁

非 RV 状态:锁定输入(端口 X3)接地 GND 后立即清除记忆然后持续采集数据,直到与地 GND 断开后锁 定数据显示并输出公差结果,同时【M5】闪动,退出只能短按【ESC】键可以解锁,或者继续下一次测量

3) 自动检测模式

测微计数据在规定时间内保持稳定后才会输出,【M4】灯亮,端口 Y1、Y2 有输出,反之无输出,【M4】 灯灭,此时可短按【▶】键切换设置内容,只能修改呈闪动状态的参数,其中:

第2位表示自动检测时间,修改范围1~9,单位:200ms;

第3位表示检测数据稳定变化量,修改范围1~9,单位:0.005mm

第4位和第5位表示超时输出时间, 修改范围 01~99, 单位: 秒

第6位表示自动检测起点,L表示最小值为起点,H表示最大值为起点;清零能清除起点记忆值

起点定义为:1号测微计数据, 当离开起点 0.05mm 后开始计算测微计数据是否稳定, 才会有输出, 否则无输出。

例如:

"2.3.2.50.L"表示: 当测头数据超过最小值(起点)0.05mm时开始计时自动判断输出,如果 0.6 秒内数据

变化不超过 0.01mm,则输出公差结果,反之,不输出;但如果超过 50 秒后强行输出公差结果;

4-3-4 PA-04 公差与预设值设置

显示 "TOL-A"为所有测头公差数据设置成一样;非 A 下显示数字,如显示 "TOL-01" ~ "TOL-04"则 单独设置对应编号的测微计的公差数据;短按【▲】键或【▼】键可以增加或减小序号,最后短按【ENT】 开始设置;

(假如共接了 16 个测微计)

●进入设置状态

此时数字最高位和 "LO" 指示灯都闪动, 数字闪动表示可以被修改, "LO" 指示灯闪动表示现在设置的是下公差

● 切换设置数据类型

按下【◀】键,"LO"灯、"HI"灯和"GO"灯依次循环闪动,"LO"表示设置下公差;"HI"灯表示设置上公差; "GO"灯表示设置预设值,即设置清零后所显示的数值。

预设值是在零点基础上增加设定数值,每次清零后,都会显示该数值。预设值的用法是,用户把 预设值设置为标准工件的实际尺寸,当用户用标准工件来校准时,按下清零键,这时就会显示预设的 标准值,这样,测量其他工件的时就会显示被测工件的实际尺寸,而不是偏差值。

设置公差后,可自动比较上下公差的大小,下公差应该小于上公差,如果设置错误会出现错误提醒,见下图

显示出错信息后,自动重新回到上公差设置状态。

● 修改设置数据

在上述三个设置状态,如果是最高位闪动,按下【▲】键或【▼】键,则在"0~9"和"一"之间 切换,"一"表示可以设置负数。长按【ZERO】键可以清零设置值。

按下【▶】键:,闪烁位右移一位,可不断循环。按下【▲】键可以使闪动位置的数据加一,或按 下【▼】键可以使闪动位置的数据减一,

● 退出设置

设置结束后,按下【ENT】键,"M3"指示灯灭,退出公差设置状态并保存所设置的数据。如果不想保存当前设置的数据,则短按【ESC】键退出公差设置状态。

4-3-5: PA-05 数据格式与方向切换

显示第3位和第4位表示数据格式,最后1位表示方向,短按【▶】键切换修改参数,短按【▲】键或 【▼】键可以修改闪动的参数;最后短按【ENT】键确定保存, 短按【ESC】键则不保存退出;

1) 数据格式

"01"格式表示测微计 4 个字节数据取第 1 个字节表示正负数,01 表示负数;00 表示正数;后 3 个字节组成为无符号整数,如 01 00 00 01 表示-0.001mm。

"FF"格式表示测微计 4 个字节数据组成为 1 个 32 位有符号整数;如 ff ff ff 表示-0.001mm。 2)方向

"0" 表示正向; 推动测杆时数据增加

"1" 表示反向; 推动测杆时数据减小

4-3-6: PA-06 恢复出厂设置

刚开始显示"no",表示取消,此时如果短按【ENT】键或【ESC】键后会退出,只能先短按【▲】键 或【▼】键,显示"yES",表示确定,此时再短按【ENT】键才会恢复出厂设置后并退出;

5 通讯协议

- 采用 MODBUS RTU 模式
- 用户可一次性读取所有传感器数据,传感器数据按顺序排列在集线器数据空间中,每个传感器数据长

度为两个字(四个字节),也可单独读取一路传感器数据;

- 用户可一次性置所有传感器零位,也可分别对每个传感器置零;
- 默认从站地址:16;
- 所有传感器数据读取操作: MODBUS 功能码:03,数据起始地址: 00, 数据长度: TOL*2(TOL 为传感 器数量, 如果是4路传感器则数据长度为8)。备注: 西门子 PLC 数据起始地址为40001;
- 单独一路传感器数据读取: MODBUS 功能码: 03,数据起始地址: (NUM-1)*2,数据长度: 2。(NUM 为传感器编号);
- 所有传感器清零操作: MODBUS 功能码: 06, 数据地址: 2048, 数据内容: AB56 (十六进制)。备注: 西门子 PLC 写入地址为: 42049;
- 单独置零操作: MOBUS 功能码: 06, 数据地址: (NUM-1)*2,数据内容: AB56 (十六进制)。(NUM 为 传感器编号)。

1) 查询位移数据

说明	读取命令: 03									
	读取数捷	读取数据地址: 00(西门子 PLC: 400001)								
	读取数据	长度:08								
序号	1	2	3	4	5	6	7	8	9	
发送格式	地址	03	00	00	00	08	CRC_L	CRC_H		
序号	1	2	3	4~7	8~11	12~15	16~19	20	21	
回复格式	地址	03	10	Dat1	Dat2	Dat3	Dat4	CRC_L	CRC_H	
	其中, Dat1~Dat4 分别为 1~4 号传感器位移数据, 每个数据占用 4 个字节									
发送举例	10 03 00	10 03 00 00 08 47 4D								
回复举例1	10 03 10 00 00 00 00 00 00 00 01 00 00 0A 00 00 00 44 AB									
	0100 00 0a 表示 -0.01mm, 数据格式为"01", 见 4-3-4									
回复举例 2	10 03 10 00 00 00 00 00 00 00 FF FF FF FF 00 00									
	FF FF FF	FF FF FF FF 表示-0.001mm,数据格式为"FF", 见 4-3-4								

多路测微计读取命令:

读 1~8 号测微计数据: 10 03 00 00 00 10 47 47 读 1~12 号测微计数据: 10 03 00 00 00 18 46 81 读 1~16 号测微计数据: 10 03 00 00 00 20 47 53 单个测微计数据: 10 03 00 00 00 02 C7 4A 读 1 号测微计数据: 10 03 00 00 00 2 C7 4A 读 3 号测微计数据: 10 03 00 04 00 02 86 8B 读 4 号测微计数据: 10 03 00 06 00 02 27 4B

2) 清零

说明	写入命令	•: 06							
	写入地址	: 01FFI	I(十六进制	引) 511	(十进制)				
	写入数据	: 0000H	I(十六进	制)					
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	01	FF	00	00	CRC_L	CRC_H	
回复格式	地址	06	01	FF	00	00	CRC_L	CRC_H	

发送举例	10 06 01 FF 00 00 BB 47				
回复举例	10 06 01 FF 00 00 BB 47				

单个测微计清零命令:

对 1 号测微计清零: 10 06 00 00 00 00 8A 8B 对 2 号测微计清零: 10 06 00 02 00 00 2B 4B 对 3 号测微计清零: 10 06 00 04 00 00 CB 4A 对 4 号测微计清零: 10 06 00 06 00 00 6A 8A

3) 内部参数读取

说明	站号:]	FF							
	读取命令	►: 03							
	读取数据地址: 3030H(十六进制) 12336(十进制)								
	读取数据长度: 02								
序号	1	2	3	4	5	6	7	8	9
发送格式	FF	03	30	30	00	02	DE	EA	
回复格式	FF	03	04	停止位	校验位	测头	地址	CRC_L	CRC_H
					波特率	数量			
	第4个字节停止位:								
	1表示2个停止位,0表示个停止位								
	第5个字	节校验位	波特率:						
	高 4	位为校验	位 (02表	示 even 偶	校验,01 表	表示 odd 奇	校验,00表	示 no 无材	え验)
	低 4	位为波持	率 (04 表	長示 115200),03 表示	38400, 0	2 表示 192	200,01 表	示 9600,
			00 表	長示 4800)					
发送举例	FF 03 30	30 00 02 D	DE DA						
回复举例	FF 03 04	00 03 04 1	0 16 F0						
	波特率为	38400;	停止位1;	测头数量	为4;地	业为 16;			

4) 外部确认:

说明	当端口》	(4 和电源;	负极 GND	短路保持	20ms,	则显示盒确认当前数据主动上传测微计				
	数据,见	L 3-1								
序号	1	2	3	4~7	8~11	12~15	16~19	20	21	
发送格式	地址	83	04	Dat1	Dat2	Dat3	Dat4	CRC_L	CRC_H	
	其中, Dat1~Dat4 为传感器位移数据									
发送举例	10 83 10	00 00 00 0	0 00 00 00	00 00 00 0	0 00 00 0	0 00 00 34 8	E			

5) 密钥命令:

说明	写入命令	•: 06							
	写入地址	: 7010H	[(十六进制) 2868	8(十进制)			
	写入数据	: AB561	H(十六进	制)					
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	70	10	AB	56	CRC_L	CRC_H	

回复格式	地址	06	08	00	AB	56	CRC_L	CRC_H	
发送举例	10 06 70	10 06 70 10 AB 56 6E 80							
回复举例	10 06 70 10 AB 56 6E 80								
备注	修改集线	盒参数前	必须先发暂	密钥命令,	再发下述	修改命令	才能做到掉	陣保存	

6) 修改地址

说明	写入命令	•: 06							
	写入地址	: 3031H(十六进制)	12337	(十进制)	1			
	写入数据	: 新地址	(1~254)						
序号	1	2	3	4	5	6	7	8	
发送格式	旧地址	06	30	31	00	新地址	CRC_L	CRC_H	
回复格式	旧地址	06	30	31	00	新地址	CRC_L	CRC_H	
发送举例	10 06 30	31 00 02 5	5 85						
回复举例	10 06 30	10 06 30 31 00 02 55 85							
	地址由1	6改为02,	回复命	令后新的设	设置立即生	效			

7) 修改波特率和停止位

说明	写入命令	·: 06							
	写入地址	: 3030H(十六进制) 12336	(十进制))			
写入数据: AB56H(十六进制)									
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	30	30	停止位	校验位	CRC_L	CRC_H	
						波特率			
回复格式	地址	06	30	30	停止位	校验位	CRC_L	CRC_H	
						波特率			
第5个字节停止位 (1表示2个停止位,0表示1个停止位)									
	第6个字	节校验位	波特率:						
	高4	位为校验	位 (02表	云 even 僶	 校验,01 表	長示 odd 奇	校验,00表	示 no 无核	δ验)
	低4位为	波持率	(04 表示 1	115200, 03	3 表示 384	00,02 表	示 19200,	01 表示 9	600, 00
	表示 480	0)							
发送举例	10 06 30	30 01 02 0	5 D5						
回复举例	10 06 30	30 01 02 0	5 D5						
	把停止位	改成2位	,波特率改	友成 19200;	,无校验,	回复命令	后新的设	置立即生效	ż

8) 修改查询模式

说明	写入命令	≻: 06							
	写入地址	: 3036H(十六进制) 12342	(十进制)	1			
	写入数据	: 查询模	式						
序号	1	2	3	4	5	6	7	8	
发送格式	地址	06	30	36	00	查询	CRC_L	CRC_H	

						模式			
回复格式	地址	06	30	36	00	查询	CRC_L	CRC_H	
						模式			
	查询模式 =0,表示实时值模式								
	查询模式 =1,表示最大值模式								
	查询模式 =2,表示最小值模式								
	查询模式 =3,表示极差模式(最大最小值之差)								
	见 4-2								
发送举例	10 06 30	36 00 01 A	4 45						
回复举例	10 06 30 36 00 01 A4 45								
	查询模式设置为最大值模式								

附录一:CRC 算法举例

```
unsigned short CRC(unsigned char frame[], int n)
//数组 frame 是 CRC 校验的对象, n 是要校验的字节数
{
    int i, j;
    unsigned short crc,flag;
    crc=0xffff;
    for(i=0;i<n;i++)</pre>
    {
        crc^=frame[i];
        for(j=0;j<8;j++)
        {
            flag=crc&0x0001;
            \operatorname{crc}>>=1;
            if(flag)
             {
                 crc&=0x7fff;
                 crc^=0xa001;
            }
        }
   }
   return(crc);
}
```

注: MODBUS CRC 校验码传输是低位在前,高位在后。

6 故障排除

故ତ	
----	--

	主盒显示是否正常	检查电源
	电脑设备管理器查看 COM, 看电脑是	不能识别, 更换 USB-232 数据线
	否识别 USB-232 数据线?	
主盒连不上电脑	COM 端口号是否大于 16?	换个 USB 口接, 或者更改端口号<16
	GEZTEST 软件是否提示扫描当前	软件不兼容 USB-232 数据线, 更换, 推
	COM 端口号	荐使用本公司生产的 USB-232 数据线
	主盒异常	更换主盒
推动测微计数据无	测微计指示灯是否闪动?	更换测微计
变化	更换正常的测微计还是不行?	更换主盒
所有测微计数据无	主盒是否报警 E00100?	更换主盒
变化	内部查询模块异常?	
清零后数据不为0	检查预设值是否设置不为0	设置预设值为0
功能异常		恢复出厂设置
数据不准确		更换测微计
无输出	M1 灯是否点亮?	部分故障发生时停止输出
显示 E10000	外部输出电流过大	检查外部输出负载
显示 E00100	对应编号的测微计通讯异常	更换测微计,如果不是不行,则更换主盒
或 E00200		
或 E00300		
或 E00400		
显示 E001xx	xx 号分盒通讯故障	更换 xx 号分盒
	如果只接1个分盒?	更换分盒后如果不行更换主盒